
CPS352 Lecture -The Entity-Relationship Data Modeling; Database Design

last revised January 24, 2017

Objectives:

1. To discuss using an ER model to think about a database at the conceptual design level.
2. To show how to convert an ER design to a relational scheme

Materials:

1. Projectable of various ER diagrams used below
2. Projectable of Book Figure 7.26 p. 309

I. Introduction

A. At the start of the course, we introduced the entity-relationship model as one
way of describing a database. We now return to it in more detail. We saw
earlier that the entity-relationship model is not, per se, a basis for
commercial products; but it is a very useful tool for DESIGNING databases.
In particular, we will focus on learning how to picture the conceptual level
design of a database using Entity-Relationship (E-R) diagrams.

B. We will also look at how to convert a conceptual design - developed as an
ER diagram - into a logical design represented as a relational scheme.

II. Review/Expansion of Definitions - Ask class for definitions

A. Entities and related concepts

1. Entity - an entity is an object that we wish to represent information about.

1

2. Entity Set - an entity set is the set of all objects of a given kind

NOTE: Entity sets in a given database do not have to be disjoint. For
example, in the library database the same person may be a member both
of the entity set employee and of the entity set borrowers

3. Attributes - Individual facts that we store concerning an entity.

a. Often, the attributes are simple, atomic, single values; but sometimes
they may not be. An attribute may be COMPOSITE - i.e. it may have
internal structure

Example: an "address" attribute might be composed of a number, a
street, a city, state, and ZIP code

Note: we have seen that the relational model requires attributes to be
atomic. But in doing conceptual design, it may be helpful to think in
terms of some composite attributes, even though they will later need
to be converted to an atomic form.

b. For a given entity, a given attribute normally has a single value, but
sometimes an attribute needs to be MULTIVALUED

Example: Some books have multiple authors; we might handle this by
making the author attribute of book entities multivalued

Again: the relational model requires attributes to be single-valued.
But in doing conceptual design, it may be helpful to think in terms of
multivalued attributes,even though they will later need to be converted
to a single-valued form.

c. Sometimes, a given attribute can be calculated from other information
in the database - in which case, instead of storing it we may compute
it upon demand. Such an attribute is called a DERIVED attribute.

Example: As we shall see, the number of books a given borrower
currently has checked out can be computed by counting; so we might
include books-out as a derived attribute of the borrower entity.

2

d. Sometimes, we will not know the value of a particular attribute for a
particular entity, or it somehow does not apply in a particular case - in
which case the value of that attribute is said to be NULL.

4. Domain - the set of possible values for each attribute of an entity is called
the domain of that attribute

5. Keys: Since the members of a set must be distinct, for any entity set,
there must be a set of attributes that serve to uniquely distinguish one
entity from all others in the set.

a. Such an attribute or set of attributes is called a SUPERKEY.
Typically, an entity set has many superkeys.

b. A superkey that has no proper subset that is also a superkey is called a
CANDIDATE KEY.

c. The candidate key chosen by the designer to uniquely identify entities
in an entity set is called the PRIMARY KEY. (This is the origin of the
term "candidate key" - it is a key that is a candidate for primary key,

6. In an E-R diagram, an entity set is represented by a rectangular box
containing the name of the entity set, with its attributes represented by
ellipses containing the name of the attribute Each attribute is connected
by a line to the entity set.

3

PROJECT

a. The primary key attribute(s) is/are often underlined.

b. Composite attributes (e.g. name, address) are shown with a
hierarchical structure.

c. Multivalued attributes (e.g. phone number) are enclosed in a
double ellipse.

d. Derived attributes (e.g. number of books out) are enclosed in a
dashed ellipse.

B. Relationships and related concepts

1. Relationship - a relationship is some connection between two or more
entities:

a. Relationships can be binary, ternary, quaternary etc - i.e. they can
involve two, three, four or more entities. However, binary
relationships (such as "checked out") are by far the most common.

(1)Example of a ternary relationship: student enrollment in a course
could be thought of as a ternary relationship involving the student,
the course, and the semester.

4

Borrower

name

first middle last city statestreet zipfirst middle lastfirst

address phone
number of
books outid

Student Course

Semester

Enrollment

PROJECT

A relationship set involving n entities (n > 2) can always be
converted to a single entity set plus n binary relationships. The
original relationship is converted to an entity, connected to each of
the other entities through the appropriate set.

Example: Alternate approach to the above.

Student Course

Semester

Enrollment

PROJECT

(Note that each of the new binary relationships is “one” on the side
connecting to the original entity. Each of the new enrollment
entities is associated with exactly one Student, Course, and
Semester)

(2)Because a conversion like this is always possible, it is actually rare
to see ternary and higher degree relationships in ER diagrams.

5

b. Normally, the entities in a relationship come from distinct entity sets.
Sometimes, though, we can have a relationship in which both entities
are from the same entity set. Then, we need to distinguish the role
each entity plays in the relationship.

Example: consider the relationship "supervised by" between
employees of the library. Both entities in the relationship are from the
same entity set (employees), but there are two distinct roles:
supervisor and supervisee. In cases such as this, it is common to
explicitly include the role names in an ER diagram.

SupervisesEmployee

Supervisor

Supervisee

PROJECT

2. Relationship set - a relationship set is the set of all relationships of a given
type - just as an entity set is the set of all entities of a given type.

Example: When a borrower checks out a book, that establishes a relationship
between the borrower and the book. The set of all such relationships,
together, constitutes the "books checked out" relationship set.

3. Formally, a relationship set is a subset of the cartesian product of the
entity sets. The cartesian product is formed by taking every possible
combination of elements from the sets.

Example: Suppose our sets of borrowers and checkouts were as follows:

Borrowers	 	 	 	 Books
Anthony Aardvark	 	 	 Herbs and Shrubs
Ralph Raccoon		 	 	 Popular Trees
Zelda Zebra	 Zoo 	 	 	 Guidebook

PROJECT

6

The Cartesian product of these sets is:

	 Anthony Aardvark, 	 Herbs and Shrubs
	 Anthony Aardvark, 	 Popular Trees
	 Anthony Aardvark,	 Zoo Guidebook
	 Ralph Raccoon,	 	 Herbs and Shrubs
	 Ralph Raccoon,	 	 Popular Trees
	 Ralph Raccoon,	 	 Zoo Guidebook
	 Zelda Zebra,		 	 Herbs and Shrubs
	 Zelda Zebra,		 	 Popular Trees
	 Zelda Zebra,		 	 Zoo Guidebook

PROJECT

This set represents the set of ALL POSSIBLE RELATIONSHIPS that
could ever occur; but obviously the "books checked out" at any one time
forms a subset of this set. (Indeed, it could be empty, and - in this
particular case - could never have more than three elements since only
one person can check out a given book at any one time.)

a. Thus, the join operation of relational algebra - which forms the
cartesian product - can be thought of as creating an entity set which
includes every possible relationship.

b. Likewise, the natural join operation can be thought of as creating an
actual instance of the relationship set corresponding to the current
instances of the entity set.

4. There exists a natural physical representation for entity sets: a file of
records, wherein each record is an entity and each field an attribute.
However, this is not true for relationships; one of the major differences
between different types of DBMS's is how they represent relationships.

a. Hierarchical DBMS's often use physical proximity or pointers to
model relationships.

7

b. Network DBMS's often use circularly linked lists for relationships

c. OO Databases may use references or pointers to model relationships.

d. Relational DBMS's do not distinguish between entities and
relationships; a relationship is just another entity. Thus, the same
physical representation is used for both. Note that the handling of
relationships represents a key difference between relational databases
and the other kinds of systems.

5. Like entities, relationships can have attributes (called descriptive
attributes) associated with them.

a. Note that we want to associate an attribute with a relationship just
when it is a property of the relationship, not of the participating
entities - e.g. in the case of date due for a book:

(1) It makes no sense to say that “date due” is a property of a
borrower. A borrower may have several different books out, with
different dates due.

(2)A date due is not really a property of a book, in the sense that a
given book may be checked out by different borrowers at different
times, with different dates due.

b. This leads to a design question. Sometimes, we must choose between
modeling a given type of information by:

• A relationship with attributes

• A relationship without attributes, plus additional attributes in one of the
entities related.

• A new entity

8

Example: the relationship "checked-out" between borrowers and books has
the attribute date_due. This could be modeled alternately by a relationship
without attributes plus a current date_due attribute for book (assuming we
had no need to store past dates due, since a book can only be checked out
to one person at a time) or by a new checked-out entity with date_due
attribute related to a borrower and a book. Depending on how we plan to
use the database, one or the other of these may be preferable.

c. When we convert a ternary or higher degree relationship to a binary one
by replacing the relationship with an entity, any attributes of the
relationship become attributes of the entity that was created to replace it.

Example: we used an example earlier of a ternary relationship between
Student, Course, and Semester. Suppose this relationship has a grade.
This is properly an attribute of the relationship (if the student takes the
course twice, each Semester has its own grade.) Thus we have:

Student Course

Semester

Enrollment

grade

PROJECT

which we convert to

9

Student Course

Semester

Enrollment

grade

PROJECT

(In fact, all of the models except the relational model have trouble
representing relationships with attributes anyway - so it is quite common
to convert even binary relationships to entities if they have attributes.)

C. Mapping Constraints - We have seen that a relationship set is a subset of the
cartesian product of the entity sets it relates. Often, the logic of the data
being modeled will impose some restrictions as to what kind subsets are
possible.

Example: We would not expect to find the following in the "books checked
out" relationship:

	 Anthony Aardvark,	 Herbs and Shrubs
	 Zelda Zebra,	 Herbs and Shrubs

Why?

ASK

1. Mapping Cardinalities - the most common constraints are mapping
cardinalities.

10

a. In general, a binary relationship can be

(1)One to one - the most tightly constrained

(2)One to many or many to one

(3)Many to many - the least constrained

Example: The relationship set "checked out" is one to many from
borrowers to books - a borrower can have many books checked
out, but a book can only be checked out to one borrower at a time.

b. If a given relationship set is one to one, any member of either entity
set involved in the relationship in question can participate in at most
one relationship of the kind in question.

Example: heterosexual marriage is a one to one relationship between
the entity sets men and women

Note that a one to one mapping constraint for a given relationship set
does not imply that a given entity MUST participate in a relationship
of that kind - only that it CAN participate in at most one such
relationship. (The relationship marriage allows for bachelors and
bachelorettes, widows and widowers etc.)

c. If a relationship set is one to many, then any entity in the first entity
set can participate in any number of relationships, but an entity in the
second set can participate in at most one.

Example: as we have already noted, the relationship "books checked
out" is one to many from borrowers to books.

d. If a relationship set is many to one, then any entity in the first entity
set can participate in at most one relationship, while entities in the
second entity set can participate in any number.

Example: the relationship "supervised by" may many to one from
employees (in the supervised by role) to employees (in the supervisor
role.) Each employee has at most one supervisor; but a supervisor can
supervise many employees.

11

Of course a one to many relationship from A to B is a many to one
relationship from B to A - i.e. there is no fundamental difference
between the two concepts - its just a matter of how we refer to it.

e. If a relationship set is many to many, then any entity of either set can
participate in any number of relationships.

Example: Suppose we defined the relationship "has taken out"
between borrowers and books, which records every book a given
borrower has ever taken out (whether or not he has it out now.) (This
is actually a very bad idea on privacy grounds, of course - but allows
us to illustrate a point about database design!) This is many to many,
since:

• Any given borrower can take out any number of books

• Over time, any given book can be checked out by any number of
borrowers

f. Note that one-to-one and one-to-many / many-to-one relationships
are most common. In fact, as we have seen, the hierarchical, network,
and object-oriented models of all have some difficulty with many-to-
many relationships, and the relational model can often use a much
more efficient representation for one-to-one and one-to-many
relationships than what must be used for many-to-many relationships.

g. Primary keys for relationship sets - just as any strong entity set has a
primary key, so does any relationship set. The primary key of a
relationship set depends on its cardinality.

(1) If it is many-to-many, then its primary key is simply the union of
the key attributes of the entities it relates.

Example: Suppose we want to record all borrowers who have ever
checked out a given book. Since the primary key for borrowers is

12

borrower-id, and that for books is call number + copy number, the
primary key for has ever checked out is the three attributes
borrower id, call number, and copy number together.

Note: Since this is a relationship set, we will record the fact that a
given borrower has checked out a given book just once in it, even
if the same borrower takes out the same book again.

(2) If it is one to many or many to one, then its primary key is the
primary key of the “one” entity.

Example: A book can only be checked out to one borrower at a
time, but a given borrower can check out many books - so checked
out is many to one from books to borrowers. Suppose the primary
key for books is call number + copy number. Then the primary
key for checked out, like that for books, is call number, and copy
number together.

(3) If it is one to one, then the primary key is the primary key of either
of the entities.

h. Mapping cardinalities are often shown in E-R diagrams by the use of
an arrowhead pointing to the "one" entity(s) - i.e.

• In a one to one relationship, arrowheads point to both entities

• In a one to many relationship, an arrowhead points to the first

• In a many to one relationship, an arrowhead points to the second

• In a many to many relationship, the diagram contains no arrowheads.

(Think of the arrowhead as indicating that we can define a function
that, given a book, returns its borrower, if any. The lack of an
arrowhead going the other way says we cannot define a function that,
given a borrower, returns the book (s)he holds, since he can hold many
books and by definition a function is single-valued.)

13

Note: notation is not consistent in this regard - some authors have the
arrow going the other way! Moreover, as the text points out, it is
possible to use numbers (like 1..n) instead of arrows, but the
convention in ER diagrams is the exact opposite of that in UML class
diagrams - very confusing! - so we will avoid this.

2. Participation constraints: in some cases, the underlying reality dictates
that every entity in one of the entity sets must participate in an instance
of the relationship.

Example: Suppose we have the notion of a borrower category, with
different categories of borrowers allowed different privileges such as
length of time to keep a book out. (This is, in fact, the case with the
Gordon library - in fact, a faculty borrower used to be able to keep a
book out for a year.)

We might want to require that every borrower be related to some
category.

a)This is called a total participation constraint (as opposed to
partial participation.

b)It is represented in an ER diagram by using a double line for the
connection between the relationship and the entity that must
participate.

Example:

BorrowerCategory
Borrower
Category

PROJECT

14

(Note: this diagram says each Borrower must not only participate
in an instance of the relationship, but must participate exactly once
- it would not make sense to have a borrower be simultaneously in
two or more categories!)

3. Existence dependencies - another form of constrained relationship,
wherein the existence of an entity in one entity set is dependent on the
existence of an entity in the other entity set.

a. We said earlier that - in almost every case - the complete set of
attributes for an entity is a superkey for the entity set.

(1) In many cases, this is uninteresting, though there are some entity
sets for which the full set of attributes is the only possible
superkey.

(2)There is a certain kind of entity set - called a weak entity set - in
which even the full set of attributes may not be sufficient to be a
superkey. (There is no superkey for a weak entity set.) A weak
entity is always subordinated to some other strong entity, on whose
very existence it depends. (More about this later).

Example: In a library database, a fine can be represented as a weak
entity depending on the borrower entity who owes it, if the fine
entity only stores the amount.

We call the entity whose existence depends on another
SUBORDINATE, and the other entity DOMINANT.

b. The key property of an existence dependency relationship is that if a
dominant entity in the relationship is deleted from the database for
some reason, then all subordinate entities depending on it must also
be deleted

15

Example: if the borrower owing some fine is removed from the
database, we must also remove the record of the fine owed. [An off-
campus borrower who moves out of state can get away with leaving
outstanding fines behind him that can never be collected.]

c. Entities within a weak entity set are uniquely identified by the combination
of some or all of their own attributes plus the entity on which they depend.

Example: Suppose that the library assesses all fines once a day, lumping
together into one amount all the amounts owed for all overdue books
returned that day by a given borrower. Then a given fine - represented as
amount due and date assessed - can be uniquely specified by specifying the
date it was assessed plus the borrower who owes it.

d. The attributes of a weak entity that identify it uniquely among all the weak
entities related to a given strong entity are called its DISCRIMINATOR or
PARTIAL KEY. The primary key of a weak entity consists of its partial
key plus the primary key of the entity on which it depends.

e. In an ER diagram, a weak entity is represented by a double box, and
the corresponding existence-dependency relationship by a double
diamond. The discriminator attributes of the weak entity are
underlined using a dashed line.

Example (attributes of borrower omitted for simplicity)

Borrower OwedBy Fine

date
assessed amount

PROJECT

16

III.Generalization and Specialization

A. Sometimes, a given entity set may contain several distinguishable groups, with
some attributes in common and some distinct to each group.

EXAMPLE: The entity set borrowers may be composed of student borrowers,
faculty/staff borrowers, and community borrowers. All borrowers have a name
and address. Student borrowers have a student id and a class year (freshman,
sophomore etc.). Faculty/staff borrowers have a faculty/staff id and a campus
department they are employed by. Community borrowers may have a special id
generated just for library use, plus some relationship to the college that explains
why they are granted borrowing privileges here (e.g. NECCUM affiliation.)

B. This kind of situation - and some of the nuances connected with it - is
discussed in the book. If it sounds a lot like inheritance in OO, that’s
because that’s really what it is!

IV.Representing Entities and Relationships by Relational Tables

A. As we have already noted, any database scheme consisting of entities and
relationships can be represented by a series of TABLES - one for each entity set,
plus one for each relationship set. These often correspond to the relations of a
relational database, though in some cases some adjustments need to be made.

B. A strong entity set can be represented by a table with one row for each entity, and
one column for each attribute. When we write such a table out, we often label the
columns with the names of the attributes, or an abbreviation for them.

EXAMPLE: The entity set borrowers - with attributes borrower_id, last_name,
first_name, - might be represented by:

ID	 	 last_name	 first_name

12345		 Aardvark	 Anthony
 20174	 Cat	 	 Charlene
...
PROJECT

17

C. A weak entity set can be represented similarly - except that we add a column
or columns containing the primary key(s) of the strong entity(s) on which
the weak entity depends:

EXAMPLE: if the entity set fines - with attributes amount owed and date
assessed - is a weak entity set subordinate to borrower, and the primary key
of borrowers is borrower-id, then fines can be represented as follows:

borrower_ID	 amount	 date_assessed

12345		 	 $0.25	 	 12-1-16
12345		 	 $0.50	 	 12-2-16
20174		 	 $0.10	 	 11-15-16
...
PROJECT

D. A relationship set can be represented by a table with one row for each
relationship, and with one column for each of its own attributes, plus one column
for each primary key attribute of each entity participating in the relationship.

EXAMPLE: If the checked-out relationship has attribute date-due, and relates
borrowers and books, and the primary key of borrowers is borrower-id, and of
books is call-number plus copy-number, then checked-out can be represented as:

borrower_ID	 call_number		 date_due

89754		 	 RZ12.905	 	 11-10-16
89754		 	 LM925.04	 	 11-10-16
...
PROJECT

E. If the relationship is one-to-one or one-to-many, it is also possible to “fold” it into
the “many” entity (by including the foreign key of the “one” entity and any
attributes), with the understanding that these will be null for an entity that is not
in any relationship.

18

EXAMPLE: since checked_out is one to many from borrowers to books, it could
also be represented by folding it into the book entity as follows:

call_number	title	 	 	 	 author	 borrower_id		 date_due

QA76.093	 Wenham Zoo Guide	 elephant	 null	 	 	 null
RZ12.905	 Fire Hydrants I Have Known dog	 89754		 	 11-10-16

PROJECT

F. Where two entity sets are related by generalization or specialization, we have two
major options:

1. We can use one table for each specialized entity set, containing all the
attributes of that set. No table need be used to represent that entity set
which represents their generalization: the information can be constructed
when needed by combining the specialized tables.

EXAMPLE: Suppose that all borrowers of the library are either
students, faculty_staff, or community borrowers. We might use three
separate tables, with no one table containing all the borrowers - e.g.

Student_Borrowers:
	 student_ID	 	 last_name	 first_name	 	 class_year

Faculty_Staff_Borrowers:
	 employee_ID	 last_name	 first_name	 	 department

Community_Borrowers:
	 borrower_ID	 last_name	 first_name	 	 relationship

In this case, we have to take a union of the three tables if we want to get
a complete list of borrowers.

19

2. We can use one table to represent all of the attributes that the special
groups have in common, plus one for each special group holding its
unique attributes, plus the primary key from the general table.

EXAMPLE: Suppose we ensure that student ids, employee ids, and
community borrower ids have different formats, so that no member of
one domain can ever be a member of another. (E.g. student ids are all
numbers, employee ids begin with the letters FAC or STF, and
community borrower ids begin with letters COM). Then we can
represent our entity sets as follows:

Borrowers
	 ID	 	 name	 	 	 address

Student_Borrowers
	 ID	 	 class_year
Faculty_Staff_Borrowers:
	 ID	 	 department
Community_Borrowers:
	 ID	 	 relationship

3. Note that the choice here can depend on whether a “general” entity must
be a member of some specialized group or not, and whether the “general”
entity can be a member of more than one specialized group. If the
“general” entity must be a member of exactly one specialized group, then
the former approach can be used; otherwise, the latter approach must be
used.

V. E-R Modeling and UML

A. The E-R diagrams we have been using are actually a precursor to the UML
class diagrams we learned about in CPS122. Of course, OO class diagrams
are quite different from E-R diagrams. It might be convenient if everybody
used just one type of diagram, but that’s not the case.

20

1. UML diagrams are typically used in the design of OO software

2. E-R diagrams are typically used in the design of database schema.

3. A given system that has an OO “front-end” and a relational database
“back-end” may, in fact, be diagrammed by using both kinds of diagrams
in the different contexts! (This has happened with some senior projects).

B. The book contains a diagram that illustrates some of the key differences
between the two notations. Note the close correspondence between the E-R
notion of “entity” and the OO notion of “class”

PROJECT: Book Figure 7.26 p. 309

C. Some key differences:

1. In E-R diagrams, attributes are typically shown outside the symbol for an
entity; in a class diagram they are shown inside the class box. (Though an
earlier form of class diagram from a precursor to UML used the E-R style
notation.)

2. In E-R diagrams, relationships are always depicted by diamonds
connected to the participating entities by lines; in UML diagrams, they
are represented by simple lines connecting the participating classes -
unless the relationship has attributes, in which case a relationship class is
needed.

3. In E-R diagrams, an alternate notation for cardinality is to explicitly
specify it using notations like 0..1, 1..1, 0..n, or 1..n, or more specific
values. But note well the E-R convention is the opposite of the UML
convention as to where the numbers go!

4. Different notations are used for generalization/specialization, which is
essentially UML inheritance.

21

